Databricks
LiteLLM supports all models on Databricks
We support ALL Databricks models, just set model=databricks/<any-model-on-databricks>
as a prefix when sending litellm requests
Usage​
- SDK
- PROXY
ENV VAR​
import os
os.environ["DATABRICKS_API_KEY"] = ""
os.environ["DATABRICKS_API_BASE"] = ""
Example Call​
from litellm import completion
import os
## set ENV variables
os.environ["DATABRICKS_API_KEY"] = "databricks key"
os.environ["DATABRICKS_API_BASE"] = "databricks base url" # e.g.: https://adb-3064715882934586.6.azuredatabricks.net/serving-endpoints
# Databricks dbrx-instruct call
response = completion(
model="databricks/databricks-dbrx-instruct",
messages = [{ "content": "Hello, how are you?","role": "user"}]
)
Add models to your config.yaml
model_list:
- model_name: dbrx-instruct
litellm_params:
model: databricks/databricks-dbrx-instruct
api_key: os.environ/DATABRICKS_API_KEY
api_base: os.environ/DATABRICKS_API_BASE
Start the proxy
$ litellm --config /path/to/config.yaml --debug
Send Request to LiteLLM Proxy Server
- OpenAI Python v1.0.0+
- curl
import openai
client = openai.OpenAI(
api_key="sk-1234", # pass litellm proxy key, if you're using virtual keys
base_url="http://0.0.0.0:4000" # litellm-proxy-base url
)
response = client.chat.completions.create(
model="dbrx-instruct",
messages = [
{
"role": "system",
"content": "Be a good human!"
},
{
"role": "user",
"content": "What do you know about earth?"
}
]
)
print(response)curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data '{
"model": "dbrx-instruct",
"messages": [
{
"role": "system",
"content": "Be a good human!"
},
{
"role": "user",
"content": "What do you know about earth?"
}
],
}'
Passing additional params - max_tokens, temperature​
See all litellm.completion supported params here
# !pip install litellm
from litellm import completion
import os
## set ENV variables
os.environ["DATABRICKS_API_KEY"] = "databricks key"
os.environ["DATABRICKS_API_BASE"] = "databricks api base"
# databricks dbrx call
response = completion(
model="databricks/databricks-dbrx-instruct",
messages = [{ "content": "Hello, how are you?","role": "user"}],
max_tokens=20,
temperature=0.5
)
proxy
model_list:
- model_name: llama-3
litellm_params:
model: databricks/databricks-meta-llama-3-70b-instruct
api_key: os.environ/DATABRICKS_API_KEY
max_tokens: 20
temperature: 0.5
Usage - Thinking / reasoning_content
​
LiteLLM translates OpenAI's reasoning_effort
to Anthropic's thinking
parameter. Code
reasoning_effort | thinking |
---|---|
"low" | "budget_tokens": 1024 |
"medium" | "budget_tokens": 2048 |
"high" | "budget_tokens": 4096 |
Known Limitations:
- Support for passing thinking blocks back to Claude Issue
- SDK
- PROXY
from litellm import completion
import os
# set ENV variables (can also be passed in to .completion() - e.g. `api_base`, `api_key`)
os.environ["DATABRICKS_API_KEY"] = "databricks key"
os.environ["DATABRICKS_API_BASE"] = "databricks base url"
resp = completion(
model="databricks/databricks-claude-3-7-sonnet",
messages=[{"role": "user", "content": "What is the capital of France?"}],
reasoning_effort="low",
)
- Setup config.yaml
- model_name: claude-3-7-sonnet
litellm_params:
model: databricks/databricks-claude-3-7-sonnet
api_key: os.environ/DATABRICKS_API_KEY
api_base: os.environ/DATABRICKS_API_BASE
- Start proxy
litellm --config /path/to/config.yaml
- Test it!
curl http://0.0.0.0:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer <YOUR-LITELLM-KEY>" \
-d '{
"model": "claude-3-7-sonnet",
"messages": [{"role": "user", "content": "What is the capital of France?"}],
"reasoning_effort": "low"
}'
Expected Response
ModelResponse(
id='chatcmpl-c542d76d-f675-4e87-8e5f-05855f5d0f5e',
created=1740470510,
model='claude-3-7-sonnet-20250219',
object='chat.completion',
system_fingerprint=None,
choices=[
Choices(
finish_reason='stop',
index=0,
message=Message(
content="The capital of France is Paris.",
role='assistant',
tool_calls=None,
function_call=None,
provider_specific_fields={
'citations': None,
'thinking_blocks': [
{
'type': 'thinking',
'thinking': 'The capital of France is Paris. This is a very straightforward factual question.',
'signature': 'EuYBCkQYAiJAy6...'
}
]
}
),
thinking_blocks=[
{
'type': 'thinking',
'thinking': 'The capital of France is Paris. This is a very straightforward factual question.',
'signature': 'EuYBCkQYAiJAy6AGB...'
}
],
reasoning_content='The capital of France is Paris. This is a very straightforward factual question.'
)
],
usage=Usage(
completion_tokens=68,
prompt_tokens=42,
total_tokens=110,
completion_tokens_details=None,
prompt_tokens_details=PromptTokensDetailsWrapper(
audio_tokens=None,
cached_tokens=0,
text_tokens=None,
image_tokens=None
),
cache_creation_input_tokens=0,
cache_read_input_tokens=0
)
)
Pass thinking
to Anthropic models​
You can also pass the thinking
parameter to Anthropic models.
You can also pass the thinking
parameter to Anthropic models.
- SDK
- PROXY
from litellm import completion
import os
# set ENV variables (can also be passed in to .completion() - e.g. `api_base`, `api_key`)
os.environ["DATABRICKS_API_KEY"] = "databricks key"
os.environ["DATABRICKS_API_BASE"] = "databricks base url"
response = litellm.completion(
model="databricks/databricks-claude-3-7-sonnet",
messages=[{"role": "user", "content": "What is the capital of France?"}],
thinking={"type": "enabled", "budget_tokens": 1024},
)
curl http://0.0.0.0:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $LITELLM_KEY" \
-d '{
"model": "databricks/databricks-claude-3-7-sonnet",
"messages": [{"role": "user", "content": "What is the capital of France?"}],
"thinking": {"type": "enabled", "budget_tokens": 1024}
}'
Supported Databricks Chat Completion Models​
We support ALL Databricks models, just set model=databricks/<any-model-on-databricks>
as a prefix when sending litellm requests
Model Name | Command |
---|---|
databricks/databricks-claude-3-7-sonnet | completion(model='databricks/databricks/databricks-claude-3-7-sonnet', messages=messages) |
databricks-meta-llama-3-1-70b-instruct | completion(model='databricks/databricks-meta-llama-3-1-70b-instruct', messages=messages) |
databricks-meta-llama-3-1-405b-instruct | completion(model='databricks/databricks-meta-llama-3-1-405b-instruct', messages=messages) |
databricks-dbrx-instruct | completion(model='databricks/databricks-dbrx-instruct', messages=messages) |
databricks-meta-llama-3-70b-instruct | completion(model='databricks/databricks-meta-llama-3-70b-instruct', messages=messages) |
databricks-llama-2-70b-chat | completion(model='databricks/databricks-llama-2-70b-chat', messages=messages) |
databricks-mixtral-8x7b-instruct | completion(model='databricks/databricks-mixtral-8x7b-instruct', messages=messages) |
databricks-mpt-30b-instruct | completion(model='databricks/databricks-mpt-30b-instruct', messages=messages) |
databricks-mpt-7b-instruct | completion(model='databricks/databricks-mpt-7b-instruct', messages=messages) |
Embedding Models​
Passing Databricks specific params - 'instruction'​
For embedding models, databricks lets you pass in an additional param 'instruction'. Full Spec
# !pip install litellm
from litellm import embedding
import os
## set ENV variables
os.environ["DATABRICKS_API_KEY"] = "databricks key"
os.environ["DATABRICKS_API_BASE"] = "databricks url"
# Databricks bge-large-en call
response = litellm.embedding(
model="databricks/databricks-bge-large-en",
input=["good morning from litellm"],
instruction="Represent this sentence for searching relevant passages:",
)
proxy
model_list:
- model_name: bge-large
litellm_params:
model: databricks/databricks-bge-large-en
api_key: os.environ/DATABRICKS_API_KEY
api_base: os.environ/DATABRICKS_API_BASE
instruction: "Represent this sentence for searching relevant passages:"
Supported Databricks Embedding Models​
We support ALL Databricks models, just set model=databricks/<any-model-on-databricks>
as a prefix when sending litellm requests
Model Name | Command |
---|---|
databricks-bge-large-en | embedding(model='databricks/databricks-bge-large-en', messages=messages) |
databricks-gte-large-en | embedding(model='databricks/databricks-gte-large-en', messages=messages) |